Bausatz: Weihnachtsbaum-Lauflicht

Vorderseite Bestückungsseite

Rückseite Lötseite

Stückliste

R2,R3,R4,R5,	150 Ohm	Widerstand	
R1	430 Ohm	Widerstand	-
R6	470kOhm	Widerstand	4110
D1,D2,D3;D4, D5,D6:D7,D8, D9	LED	Leuchtdioden	
C1	12n	Kondensator	
U1	CD 4060	IC Integrierte Schaltkreis	HEF4060BP 718420T Hnn9109 2
Clip	Batterie- Clip		
BT1	Batterie- halter		

Beachte die Hinweise zum Aufbau auf den weiteren Seiten.

Benötigte Werkzeuge: Lötkolben, Lötzinn, Seitenschneider, Spitzzange. Heißklebepistole

Zum Betrieb wird eine 9V Blockbatterie benötigt. Sie ist nicht Teil des Bausatzes.

Lese die gesamte Bauanleitung vor der Arbeit komplett durch.

Schritt 1:

Beginne beim Aufbau mit den Widerständen.

Unterschiedliche Widerstände haben unterschiedliche farbige Ringe.

Widerstand auswählen.

Widerstand scharf am Gehäuse abbiegen.

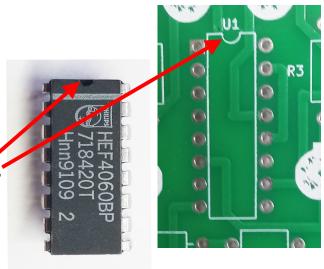
Widerstand auf der bedruckten Vorderseite bei seinem Namen einsetzen

Drähte auf der Rückseite leicht umbiegen Widerstand festlöten und Draht abkneifen.

Name	Wert	Abildung	
R2,R3,R4,R5	150 Ohm	Widerstand braun-grün-schwarz-schwarz-braun	
R1	430 Ohm	Widerstand gelb-orange-schwarz-schwarz-braun	
R6	470 kOhm	Widerstand gelb-violett-gelb-gold	

Schritt 2:

Kondensator



Kondensator auf der bedruckten Seite (Vorderseite) bei C1 einsetzen Drähte auf der Rückseite leicht umbiegen Kondensator festlöten und Draht abkneifen.

Schritt 3:

Integrierten Schaltkreis (U1) auf der bedruckten Seite (Vorderseite) einsetzen.

Kerbe des Bauelemtes zeigt nach oben. Vor dem Löten je zwei Pins umbiegen. Damit wird das Bauelement fixiert. Bauelement verlöten.

Rückseite

Schritt 4:

Leuchtdioden (D1 bis D9) einsetzen. LEDs haben ein kurze und ein langes Beinchen. Das kurze Beinchen muss nach außen zeigen. LED`s verlöten und abkneifen.

Vorderseite

Schritt 5:

Kabel des Batterie-Clips auf der Rückseite anlöten. Beachte die Polarität.

Rotes Kabel an +

Schwarzes Kabel an -

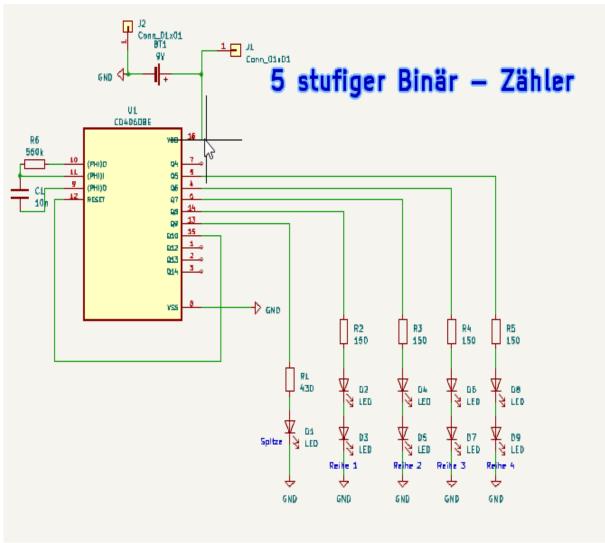
Schritt 6:

Batteriehalter einbauen.

Lege das Anschlusskabel unter den Halter. Den Batteriehalte so positionieren das die untere Kante mit der Platine abschließt. Batteriehalter links und rechts(siehe rote Punkte) mit Heißkleber festkleben.

Schritt 7:

Alle Lötstellen noch einmal prüfen.


Batterie einsetzen. Polung beachten und los gehts.

Funktionsweise

Der Baustein CD 4060BE wurde als 5 stufiger Binär Zähler verschaltet.

Mit jedem Taktimpuls am Eingang (PHI)I zählt der Baustein einen Schritt weiter. Das decodierte Binärsignal wird über die Ausgänge Q5 – Q9 an die LED's geschaltet und lässt diese leuchten.

Beim Überlauf des Zählers schaltet der Ausgang Q10 auf High und setzt den Zähler in der Ausgangszustand zurück.

Der Takt für den Zählvorgang erzeugt ein interner Oszilator. R6 und C1 bestimmen die Taktfrequenz.